Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 97
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; : e202403331, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38728142

RESUMO

The evolution of inorganic solid electrolytes has revolutionized the field of sustainable organic cathode materials, particularly addressing the dissolution problems in traditional liquid electrolytes. However, current sulfide-based all-solid-state lithium-organic batteries still face challenges such as high working temperatures, high costs, and low voltage. Here, we design an all-solid-state lithium battery based on a cost-effective organic cathode material phenanthrenequinone (PQ) and a halide solid electrolyte Li2ZrCl6. Thanks to the good compatibility between PQ and Li2ZrCl6, the PQ cathode achieved a high specific capacity of 248 mAh g-1 (96% of the theoretical capacity), a high average discharge voltage of 2.74 V (vs. Li+/Li), and a good capacity retention of 95% after 100 cycles at room temperature (25 °C). Furthermore, the interaction between the high-voltage carbonyl PQ cathode and both sulfide and halide solid electrolytes, as well as the redox mechanism of PQ cathode in all-solid-state batteries,  were carefully studied by a variety of advanced characterizations. We believe such a design and the corresponding investigations for the underlying chemistry give insights into the further development of practical all-solid-state lithium-organic batteries.

2.
Nat Commun ; 15(1): 53, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38167381

RESUMO

Metal halide solid-state electrolytes have gained widespread attention due to their high ionic conductivities, wide electrochemical stability windows, and good compatibility with oxide cathode materials. The exploration of highly ionic conductive halide electrolytes is actively ongoing. Thus, understanding the relationship between composition and crystal structure can be a critical guide for designing better halide electrolytes, which still remains obscure for reliable prediction. Here we show that the cationic polarization factor, which describes the geometric and ionic conditions, is effective in predicting the stacking structure of halide electrolytes formation. By supplementing this principle with rational design and preparation of more than 10 lithium halide electrolytes with high conductivity over 10-3 S cm-1 at 25 °C, we establish that there should be a variety of promising halide electrolytes that have yet to be discovered and developed. This methodology may enable the systematic screening of various potential halide electrolytes and demonstrate an approach to the design of halide electrolytes with superionic conductivity beyond the structure and stability predictions.

3.
Adv Mater ; 36(13): e2302647, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37993111

RESUMO

All-solid-state lithium metal batteries can address crucial challenges regarding insufficient battery cycling life and energy density. The demonstration of long-cycling dendrite-free all-solid-state lithium metal batteries requires precise tailoring of lithium-ion transport of solid-state electrolytes (SSEs). In this work, a proof of concept is reported for precise tailoring of lithium-ion transport of a halide SSE, Li3InCl6, including intragranular (within grains) but also intergranular (between grains) lithium-ion transport. Lithium-ion migration tailoring mechanism in crystals is developed by unexpected enhanced Li, In, and Cl vacancy populations and lower energy barrier for hopping. The lithium-ion transport tailoring mechanism between the grains is determined by the elimination of voids between grains and the formation of unexpected supersonic conducting grain boundaries, boosting the lithium dendrite suppression ability of SSE. Due to boosted lithium-ion conduction and dendrite-suppression ability, the all-solid-state lithium metal batteries coupled with Ni-rich LiNi0.83Co0.12Mn0.05O2 cathodes and lithium metal anodes demonstrate breakthroughs in electrochemical performance by achieving extremely long cycling life at a high current density of 0.5 C (2000 cycles, 93.7% capacity retention). This concept of precise tailoring of lithium-ion transport provides a cost, time, and energy efficient solution to conquer the remaining challenges in all-solid-state lithium-metal batteries for fast developing electric vehicle markets.

4.
Sci Adv ; 9(42): eadh4626, 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37862412

RESUMO

Attaining substantial areal capacity (>3 mAh/cm2) and extended cycle longevity in all-solid-state lithium metal batteries necessitates the implementation of solid-state electrolytes (SSEs) capable of withstanding elevated critical current densities and capacities. In this study, we report a high-performing vacancy-rich Li9N2Cl3 SSE demonstrating excellent lithium compatibility and atmospheric stability and enabling high-areal capacity, long-lasting all-solid-state lithium metal batteries. The Li9N2Cl3 facilitates efficient lithium-ion transport due to its disordered lattice structure and presence of vacancies. Notably, it resists dendrite formation at 10 mA/cm2 and 10 mAh/cm2 due to its intrinsic lithium metal stability. Furthermore, it exhibits robust dry-air stability. Incorporating this SSE in Ni-rich LiNi0.83Co0.11Mn0.06O2 cathode-based all-solid-state batteries, we achieve substantial cycling stability (90.35% capacity retention over 1500 cycles at 0.5 C) and high areal capacity (4.8 mAh/cm2 in pouch cells). These findings pave the way for lithium metal batteries to meet electric vehicle performance demands.

5.
Process Saf Environ Prot ; 176: 673-684, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37350802

RESUMO

Accurate and dependable air quality forecasting is critical to environmental and human health. However, most methods usually aim to improve overall prediction accuracy but neglect the accuracy for unexpected incidents. In this study, a hybrid model was developed for air quality index (AQI) forecasting, and its performance during COVID-19 lockdown was analyzed. Specifically, the variational mode decomposition (VMD) was employed to decompose the original AQI sequence into some subsequences with the parameters optimized by the Whale optimization algorithm (WOA), and the residual sequence was further decomposed by the complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN). On this basis, a deep learning method bidirectional long short-term memory coupled with added time filter layer and attention mechanism (TFA-BiLSTM) was employed to explore the latent dynamic characteristics of each subsequence. This WOA-VMD-CEEMDAN-TFA-BiLSTM hybrid model was used to forecast AQI values for four cities in China, and results verified that the accuracy of the hybrid model outperformed other proposed models, achieving R2 values of 0.96-0.97. In addition, the improvement in MAE (34.71-49.65%) and RMSE (32.82-48.07%) were observed over single decomposition-based model. Notably, during the epidemic lockdown period, the hybrid model had significant superiority over other proposed models for AQI prediction.

6.
J Am Chem Soc ; 145(21): 11701-11709, 2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37195646

RESUMO

Inorganic solid-state electrolytes (SSEs) have gained significant attention for their potential use in high-energy solid-state batteries. However, there is a lack of understanding of the underlying mechanisms of fast ion conduction in SSEs. Here, we clarify the critical parameters that influence ion conductivity in SSEs through a combined analysis approach that examines several representative SSEs (Li3YCl6, Li3HoCl6, and Li6PS5Cl), which are further verified in the xLiCl-InCl3 system. The scaling analysis on conductivity spectra allowed the decoupled influences of mobile carrier concentration and hopping rate on ionic conductivity. Although the carrier concentration varied with temperature, the change alone cannot lead to the several orders of magnitude difference in conductivity. Instead, the hopping rate and the ionic conductivity present the same trend with the temperature change. Migration entropy, which arises from lattice vibrations of the jumping atoms from the initial sites to the saddle sites, is also proven to play a significant role in fast Li+ migration. The findings suggest that the multiple dependent variables such as the Li+ hopping frequency and migration energy are also responsible for the ionic conduction behavior within SSEs.

7.
Nat Commun ; 14(1): 146, 2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36627277

RESUMO

High-energy Ni-rich layered oxide cathode materials such as LiNi0.8Mn0.1Co0.1O2 (NMC811) suffer from detrimental side reactions and interfacial structural instability when coupled with sulfide solid-state electrolytes in all-solid-state lithium-based batteries. To circumvent this issue, here we propose a gradient coating of the NMC811 particles with lithium oxy-thiophosphate (Li3P1+xO4S4x). Via atomic layer deposition of Li3PO4 and subsequent in situ formation of a gradient Li3P1+xO4S4x coating, a precise and conformal covering for NMC811 particles is obtained. The tailored surface structure and chemistry of NMC811 hinder the structural degradation associated with the layered-to-spinel transformation in the grain boundaries and effectively stabilize the cathode|solid electrolyte interface during cycling. Indeed, when tested in combination with an indium metal negative electrode and a Li10GeP2S12 solid electrolyte, the gradient oxy-thiophosphate-coated NCM811-based positive electrode enables the delivery of a specific discharge capacity of 128 mAh/g after almost 250 cycles at 0.178 mA/cm2 and 25 °C.

8.
Angew Chem Int Ed Engl ; 62(13): e202217081, 2023 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-36697365

RESUMO

Insertion-type compounds based on oxides and sulfides have been widely identified and well-studied as cathode materials in lithium-ion batteries. However, halides have rarely been used due to their high solubility in organic liquid electrolytes. Here, we reveal the insertion electrochemistry of VX3 (X=Cl, Br, I) by introducing a compatible halide solid-state electrolyte with a wide electrochemical stability window. X-ray absorption near-edge structure analyses reveal a two-step lithiation process and the structural transition of typical VCl3 . Fast Li+ insertion/extraction in the layered VX3 active materials and favorable interface guaranteed by the compatible electrode-electrolyte design enables high rate capability and stable operation of all-solid-state Li-VX3 batteries. The findings from this study will contribute to developing intercalation insertion electrochemistry of halide materials and exploring novel electrode materials in viable energy storage systems.

9.
Angew Chem Int Ed Engl ; 62(5): e202215680, 2023 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-36446742

RESUMO

Sulfide electrolytes with high ionic conductivities are one of the most highly sought for all-solid-state lithium batteries (ASSLBs). However, the non-negligible electronic conductivities of sulfide electrolytes (≈10-8  S cm-1 ) lead to electron smooth transport through the sulfide electrolyte pellets, resulting in Li dendrite directly depositing at the grain boundaries (GBs) and serious self-discharge. Here, a grain-boundary electronic insulation (GBEI) strategy is proposed to block electron transport across the GBs, enabling Li-Li symmetric cells with 30 times longer cycling life and Li-LiCoO2 full cells with three times lower self-discharging rate than pristine sulfide electrolytes. The Li-LiCoO2 ASSLBs deliver high capacity retention of 80 % at 650 cycles and stable cycling performance for over 2600 cycles at 0.5 mA cm-2 . The innovation of the GBEI strategy provides a new direction to pursue high-performance ASSLBs via tailoring the electronic conductivity.

10.
Bioresour Technol ; 368: 128352, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36403914

RESUMO

The microbial electrolysis cell (MEC) is a promising technology for antibiotic removal in sewage sludge. Temperature and voltage are key operating factors, but information about their effects on antibiotic degradation in MECs is still limited. Therefore, the effects of the temperature and applied voltage on the degradation and solid-liquid distribution of antibiotics in MECs treating sewage sludge were investigated. The results showed that the thermophilic (55 °C) MEC (T-MEC) at 0.8 V achieved the highest total antibiotic removal efficiency of 58.7 % due to the increase in bioelectrochemical activity for anodes and microbial activity in suspended sludge. The solid-liquid migration of antibiotics was facilitated, which had a significant positive correlation with antibiotic removal. Biodegradation was the rate-limiting step for the removal of fluoroquinolones, which had the highest levels in sludge. Geobacter and Thermincola were dominant bacteria in the anode biofilms of mesophilic (37 °C) MECs (M-MECs) and T-MECs, respectively.


Assuntos
Antibacterianos , Esgotos , Temperatura , Eletrólise , Fluoroquinolonas
11.
J Am Chem Soc ; 145(4): 2183-2194, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36583711

RESUMO

The revival of ternary halides Li-M-X (M = Y, In, Zr, etc.; X = F, Cl, Br) as solid-state electrolytes (SSEs) shows promise in realizing practical solid-state batteries due to their direct compatibility toward high-voltage cathodes and favorable room-temperature ionic conductivities. Most of the reported superionic halide SSEs have a structural pattern of [MCl6]x- octahedra and generate a tetrahedron-assisted Li+ ion diffusion pathway. Here, we report a new class of zeolite-like halide frameworks, SmCl3, for example, in which 1-dimensional channels are enclosed by [SmCl9]6- tricapped trigonal prisms to provide a short jumping distance of 2.08 Å between two octahedra for Li+ ion hopping. The fast Li+ diffusion along the channels is verified through ab initio molecular dynamics simulations. Similar to zeolites, the SmCl3 framework can be grafted with halide species to obtain mobile ions without altering the base structure, achieving an ionic conductivity over 10-4 S cm-1 at 30 °C with LiCl as the adsorbent. Moreover, the universality of the interface-bonding behavior and ionic diffusion in a class of framework materials is demonstrated. It is suggested that the ionic conductivity of the MCl3/halide composite (M = La-Gd) is likely in correlation with the ionic conductivity of the grafted halide species, interfacial bonding, and framework composition/dimensions. This work reveals a potential class of halide structures for superionic conductors and opens up a new frontier for constructing zeolite-like frameworks in halide-based materials, which will promote the innovation of superionic conductor design and contribute to a broader selection of halide SSEs.

12.
Environ Res ; 216(Pt 3): 114723, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36336093

RESUMO

Ammonia nitrogen (NH3-N) is closely related to the occurrence of cyanobacterial blooms and destruction of surface water ecosystems, and thus it is of great significance to develop predictive models for NH3-N. However, traditional models cannot fully consider the complex nonlinear relationship between NH3-N and various relative environmental parameters. The long short-term memory (LSTM) neural network can overcome this limitation. A new hybrid model BC-MODWT-DA-LSTM was proposed based on LSTM combining with the dual-stage attention (DA) mechanism and boundary corrected maximal overlap discrete wavelet transform (BC-MODWT) data decomposition method. By introducing attention mechanism, LSTM could selectively focus on the input data. BC-MODWT could decompose the input data into sublayers to determine the main swings and trends of the input feature series. The BC-MODWT-DA-LSTM hybrid model was superior to other studied models with lower average prediction errors. It could maintain NASH Sutcliffe efficiency coefficient (NSE) values above 0.900 under the lead time up to 7 days, and the area under the receiver operating characteristic (ROC) curve could reach 0.992. The hybrid model also had higher prediction accuracies at the peak spots, indicating that it was capable of early warning when sudden high NH3-N pollution occurred. The high forecasting accuracy of the suggested hybrid method proved that further improving LSTM model without introducing more complex topologies was a promising water quality prediction method.


Assuntos
Amônia , Aprendizado Profundo , Ecossistema , Redes Neurais de Computação , Nitrogênio
13.
Adv Mater ; 35(5): e2207234, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36461688

RESUMO

Employing lithium-rich layered oxide (LLO) as the cathode of all-solid-state batteries (ASSBs) is highly desired for realizing high energy density. However, the poor kinetics of LLO, caused by its low electronic conductivity and significant oxygen-redox-induced structural degradation, has impeded its application in ASSBs. Here, the charge transfer kinetics of LLO is enhanced by constructing high-efficiency electron transport networks within solid-state electrodes, which considerably minimizes electron transfer resistance. In addition, an infusion-plus-coating strategy is introduced to stabilize the lattice oxygen of LLO, successfully suppressing the interfacial oxidation of solid electrolyte (Li3 InCl6 ) and structural degradation of LLO. As a result, LLO-based ASSBs exhibit a high discharge capacity of 230.7 mAh g-1 at 0.1 C and ultra-long cycle stability over 400 cycles. This work provides an in-depth understanding of the kinetics of LLO in solid-state electrodes, and affords a practically feasible strategy to obtain high-energy-density ASSBs.

14.
Adv Mater ; 34(20): e2200856, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35365923

RESUMO

Solid-state Li-S and Li-Se batteries are promising devices that can address the safety and electrochemical stability issues that arise from liquid-based systems. However, solid-state Li-Se/S batteries usually present poor cycling stability due to the high resistance interfaces and decomposition of solid electrolytes caused by their narrow electrochemical stability windows. Here, an integrated solid-state Li-Se battery based on a halide Li3 HoCl6 solid electrolyte with high ionic conductivity is presented. The intrinsic wide electrochemical stability window of the Li3 HoCl6 and its stability toward Se and the lithiated species effectively inhibit degeneration of the electrolyte and the Se cathode by suppressing side reactions. The inherent thermodynamic mechanism of the lithiation/delithiation process of the Se cathode in solid is also revealed and confirmed by theoretical calculations. The battery achieves a reversible capacity of 402 mAh g-1 after 750 cycles. The electrochemical performance, thermodynamic lithiation/delithiation mechanism, and stability of metal-halide-based Li-Se batteries confer theoretical study and practical applicability that extends to other energy-storage systems.

15.
Sci Total Environ ; 806(Pt 3): 151212, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34715231

RESUMO

Applying an electric field in the membrane filtration was an effective method to alleviate membrane fouling and enhance the trace organic compounds (TrOCs) removal. The secondary effluent of a municipal wastewater treatment plant was used as feed water to evaluate the performance of the electric field coupled microfiltration system. Applying a 1.25 V voltage reduced 22.9% membrane fouling by electrophoretic force, and the membrane fouling was alleviated by 70.8% at 3 V by electrochemical oxidation and electric field force. At 3 V, active chlorine and hydroperoxide generated on the electrodes and the acidic environment formed around the anode significantly inhibited the growth of microorganisms and their attachment on the membrane surface, and thus reduced the membrane fouling formed by microorganisms. Electrochemical oxidation also removed the protein in wastewater and changed the main organic components of membrane fouling from microorganisms, protein, and polysaccharide to humic substances and polysaccharide. Furthermore, the electrophoretic force and acidic environment reduced the electrostatic repulsion of humic substances and made them tend to aggregate and form hydrophilic porous fouling structures, which obviously lowered filtration resistance and showed significant membrane fouling mitigation. Also, the electric field effectively enhanced the removal of target TrOCs through electrochemical oxidation and electric field force improving the elimination of TrOCs from 8.5% ~ 26.1% at 0 V to 35.9% ~ 84.8% at 3 V.


Assuntos
Membranas Artificiais , Purificação da Água , Filtração , Compostos Orgânicos , Águas Residuárias
16.
J Environ Sci (China) ; 111: 292-300, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34949359

RESUMO

The effects of Ca2+ on membrane fouling and trace organic compounds (TrOCs) removal in an electric field-assisted microfiltration system were investigated in the presence of Na+ alone for comparison. In the electric field, negatively charged bovine serum albumin (BSA) migrated towards the anode far away from the membrane surface, resulting in a 42.9% transmembrane pressure (TMP) reduction in the presence of Na+ at 1.5 V. In contrast, because of the stronger charge shielding of Ca2+, the electrophoretic migration of BSA was limited and led to a neglectable effect of the electric field (1.5 V) on membrane fouling. However, under 3 V applied voltage, the synergistic effects of electrochemical oxidation and bridging interaction between Ca2+ and BSA promoted the formation of denser settleable flocs and a thinner porous cake layer, which alleviated membrane fouling with a 64.5% decrease in TMP and nearly 100% BSA removal. The TrOCs elimination increased with voltage and reached 29.4%-80.4% at 3 V. The electric field could prolong the contact between TrOCs and strong oxidants generated on the anode, which enhanced the TrOCs removal. However, a stronger charge shielding ability of Ca2+ weakened the electric field force and thus lowered the TrOCs removal.


Assuntos
Membranas Artificiais , Purificação da Água , Eletricidade , Compostos Orgânicos , Ultrafiltração
17.
Small Methods ; 5(9): e2100176, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34928060

RESUMO

Numerous efforts are made to improve the reversible capacity and long-term cycling stability of Li-S cathodes. However, they are susceptible to irreversible capacity loss during cycling owing to shuttling effects and poor Li+ transport under high sulfur loading. Herein, a physically and chemically enhanced lithium sulfur cathode is proposed to address these challenges. Additive manufacturing is used to construct numerous microchannels within high sulfur loading cathodes, which enables desirable deposition mechanisms of lithium polysulfides and improves Li+ and e- transport. Concurrently, cobalt sulfide is incorporated into the cathode composition and demonstrates strong adsorption behavior toward lithium polysulfides during cycling. As a result, excellent electrochemical performance is obtained by the design of a physically and chemically enhanced lithium sulfur cathode. The reported electrode, with a sulfur loading of 8 mg cm-2 , delivers an initial capacity of 1118.8 mA h g-1 and a reversible capacity of 771.7 mA h g-1 after 150 cycles at a current density of 3 mA cm-2 . This work demonstrates that a chemically enhanced sulfur cathode, manufactured through additive manufacturing, is a viable pathway to achieve high-performance Li-S batteries.

18.
Nat Commun ; 12(1): 6806, 2021 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-34815417

RESUMO

Single-atom catalysts (SACs) have been applied in many fields due to their superior catalytic performance. Because of the unique properties of the single-atom-site, using the single atoms as catalysts to synthesize SACs is promising. In this work, we have successfully achieved Co1 SAC using Pt1 atoms as catalysts. More importantly, this synthesis strategy can be extended to achieve Fe and Ni SACs as well. X-ray absorption spectroscopy (XAS) results demonstrate that the achieved Fe, Co, and Ni SACs are in a M1-pyrrolic N4 (M= Fe, Co, and Ni) structure. Density functional theory (DFT) studies show that the Co(Cp)2 dissociation is enhanced by Pt1 atoms, thus leading to the formation of Co1 atoms instead of nanoparticles. These SACs are also evaluated under hydrogen evolution reaction (HER) and oxygen evolution reaction (OER), and the nature of active sites under HER are unveiled by the operando XAS studies. These new findings extend the application fields of SACs to catalytic fabrication methodology, which is promising for the rational design of advanced SACs.

19.
Sci Adv ; 7(37): eabh1896, 2021 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-34516879

RESUMO

Solid-state halide electrolytes have gained revived research interests owing to their high ionic conductivity and high-voltage stability. However, synthesizing halide electrolytes from a liquid phase is extremely challenging because of the vulnerability of metal halides to hydrolysis. In this work, ammonium-assisted wet chemistry is reported to synthesize various solid-state halide electrolytes with an exceptional ionic conductivity (>1 microsiemens per centimeter). Microstrain-induced localized microstructure change is found to be beneficial to lithium ion transport in halide electrolytes. Furthermore, the interfacial incompatibility between halide electrolytes and lithium metal is alleviated by transforming the mixed electronic/ionic conductive interface into a lithium ion­conductive interface. Such all-solid-state lithium-metal batteries (ASSLMBs) demonstrate a high initial coulombic efficiency of 98.1% based on lithium cobalt oxide and a high discharge capacity of 166.9 microampere hours per gram based on single-crystal LiNi0.6Mn0.2Co0.2O2. This work provides universal approaches in both material synthesis and interface design for developing halide-based ASSLMBs.

20.
ACS Appl Mater Interfaces ; 13(32): 38296-38304, 2021 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-34370436

RESUMO

Lithium-sulfur (Li-S) batteries are drawing huge attention as attractive chemical power sources. However, traditional ether-based solvents (DME/DOL) suffer from safety issues at high temperatures and serious parasitic reactions occur between the Li metal anodes and soluble lithium polysulfides (LiPSs). Herein, we propose a polysulfide-suppressed and flame-retardant electrolyte operated at high temperatures by introducing an inert diluent 1,1,2,2-tetrafluoroethyl-2,2,3,3-tetrafluoropropyl (TTE) into the high-concentration electrolyte (HCE). Li dendrites are also efficiently suppressed by the formed LiF-rich protective layer. Furthermore, the shuttle effect is mitigated by the decreased solubility of LiPSs. At 60 °C, Li-S batteries using this nonflammable ether-based electrolyte exhibit a high capacity of 666 mAh g-1 over 100 cycles at a current rate of 0.2C, showing the greatly improved high-temperature performance compared to batteries with traditional ether-based electrolytes. The improved electrochemical performance across a range of temperatures and the enhanced safety suggest that the electrolyte has a great practical prospect for safe Li-S batteries.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...